● このスライドは、非営利かつ個人的な目的に限り閲覧することができます。

The following presentation slides are shared with symposium registrants exclusively for personal, non-commercial, educational purposes.

このスライドの著作権は、講演の発表者本人に帰属します(図表等の引用箇所は除く)。如何なる国・地域においても、また紙媒体やインターネット・電子データなど形態に関わらず、スライドの全部または一部を無断で複製、転載、配布、送信、放送、貸与、翻訳、販売、変造、二次的著作物を作成すること等は、固く禁止します。
Copyright of these slides belongs to the presenter and/or the Radiation Medical Science Center for the Fukushima Health Management Survey, Fukushima Medical University (except figures, tables, etc., cited from other sources). Authorized recipients should refrain from reproducing, reprinting, distributing, transmitting, broadcasting, loaning, translating, selling, modifying, or creating derivatives of any slides, in any physical or electronic medium anywhere in the world.

2023年 福島県立医科大学『県民健康調査』国際シンポジウム 公立大学法人福島県立医科大学放射線医学県民健康管理センター 国際シンポジウム事務局(広報・国際連携室) 図 kenkani@fmu.ac.jp Tel: 024-581-5454(平日9~17時) 2023 Fukushima Medical University International Symposium on the Fukushima Health Management Survey Secretariat of International Symposium Office of Public Communications and International Cooperation, Radiation Medical Science Center for the Fukushima Health Management Survey, Fukushima Medical University Secretariat of International Symposium Factors associated with the development of thyroid cancer identified in the Thyroid Ultrasound Examination

SHIMURA Hiroki, MD, PhD

Department of Laboratory Medicine,

Department of Thyroid Ultrasound Examination Radiation Medical Science Center for the Fukushima Health Management Survey

Fukushima Medical University, Fukushima, Japan

COI Disclosures

Nothing to disclose

This presentation

- Current progress and future plans for the Thyroid Ultrasound Examination (TUE) in the Fukushima Health Management Survey.
- Confounding factors other than radiation associated with the detection rate of thyroid cancer (thyroid nodule).
 - Age
 - Sex
 - Participation rate of the confirmatory examination
 - Survey interval
 - Implementation rate of FNAC
 - Obesity
- Association between radiation exposure and detection rate of thyroid cancer (thyroid nodules)
 - Association with municipal average estimated thyroid absorbed doses (UNSCEAR estimate)
 - Association with individually estimated equivalent thyroid doses (estimated in Fukushima Medical University)

Flow chart of Thyroid Ultrasound Examination program

for residents in Fukushima aged 18 years or younger at the accident

Progress of Thyroid Ultrasound Examination

Fiscal year	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022
PBLS Primary (1st round) Confirmatory			\rightarrow	→	→							
1st FSS Primary (2nd round) <mark>Confirmatory</mark>					→		→					
2nd FSS Primary (3rd round) Confirmatory							\rightarrow		→			
3rd FSS Primary (4th round) <mark>Confirmatory</mark>									→	>		
4th FSS Primary (5th round) Confirmatory												\rightarrow
Survey for Primary age 25 Confirmatory												\rightarrow
Survey for Primary age 30 Confirmatory												\rightarrow

PBLS: Preliminary Baseline Survey, FSS: Full-Scale Survey

Progress of fifth-round and plans in sixth-round survey

	Fifth round			Sixth round		
	FY2020	FY2021	FY2022	FY2023	FY2024	
Born in FY1992	28	29	30	31	32	
Born in FY1993	27	28	29	30	31	
Born in FY1994	26	27	28	29	30	
Born in FY1995	25	26	27	28	29	
Born in FY1996	24	25	26	27	28	
Born in FY1997	23	24	25	26	27	
Born in FY1998	22	23	24	25	26	
Born in FY1999	21	22	23	24	25	
Born in FY2000	20	21	22	23	24	
Born in FY2001	19	20	21	22	23	
Born in FY2002	18	19	20	21	22	
Born in FY2003	17	18	19	20	21	
Born in FY2004	16	17	18	19	20	
Born in FY2005	15	16	17	18	19	

Numbers in the table are ages at the end of each fiscal year.

Examination mainly at medical facilities

Examination mainly at schools

Summary of results

		PBLS (1st round)*	1st FSS (2nd round)**	2nd FSS (3rd round)***	3rd FSS (4th round)****	Survey for age 25**
Fiscal y	ear	2011-2013	2014-2015	2016-2017	2018-2019	2017-
Eligible pe	rsons	367,637	381,237	336,667	294,228	108,713
Participatio	n rate	81.7%	71.0%	64.7%	62.3%	9.1%
	A1	51.5%	40.2%	35.1%	33.6%	42.5%
Judgement in	A2	47.8%	59.0%	64.2%	65.6%	52.2%
the primary examination	В	0.8%	0.8%	0.7%	0.8%	5.3%
	С	0.0%	0.0%	0.0%	0.0%	0.0%
Eligible per for the conf	rsons exam	2,293	2,230	1,502	1,394	430
Participation conf exa	rate of am	92.9%	84.2%	73.5%	74.3%	82.1%
M or SM (F	NAC)	116	71	31	39	16
Surgically t	reated	102	56	29	34	10
Pathological diagnosis	PTC	100	55	29	34	9
	PDTC	1				
	Others	1 (Benign)	1 (Others)			1 (FTC)

PBLS: Preliminary Baseline Survey, FSS: Full-Scale Survey, M or MS: malignancy or suspicious for malignancy *As of March 31, 2018, **As of March 31, 2022, ***As of March 31, 2021, ****As of June 30, 2022

Rate of Grade B (nodule > 5mm or cyst > 20mm)

Document in the 45th and 46th Prefectural Oversight Committee Meeting and 16th meeting of Prefectural Subcommittee

Number of cases diagnosed as malignant or suspicious for malignancy

Detection rate of nodules diagnosed as malignant or suspicious for malignancy

Document in the 16th meeting of Prefectural Subcommittee for the TUE program

Percentage of female in examinees with Grade B

Document in the 27th, 31st, 42nd, 45th, and 46th Prefectural Oversight Committee Meeting

Percentage of female in examinees with nodules diagnosed as malignant or suspicious for malignancy

Document in the 27th, 31st, 42nd, 45th, and 46th Prefectural Oversight Committee Meeting

Flow chart of Thyroid Ultrasound Examination program

for residents in Fukushima aged 18 years or younger at the accident

Regional differences and changes in the participation rate of confirmatory examination

Fourth-round survey 100.0% 90.0% 78.8% 79.4% 75.0% 80.0% 71.3% 70.5% 70.0% 60.0% 50.0% 40.0% 30.0% 20.0% 10.0% 0.0% Region 1 Region 2 Region 3 Region 4 Survey for

age 25※ Document in the 31st, 45th, and 46th Prefectural Oversight Committee Meeting

^{*:} Born in FY1993-FY1994

Regional differences in the interval between examinations since the last examination

Interval from the first-round survey and the second-round survey

Document in the 11th meeting of Prefectural Subcommittee for the TUE program

Regional difference in the implementation rate of FNAC

FNAC implementation rate among examinees who diagnosed as Grade B in the conf exam

*: Born in FY1993-FY1994

Document in the 31st, 45th, and 46th Prefectural Oversight Committee Meeting

Association between obesity and thyroid cancer risk

	Control	Over weight	Obesity
Participant (n)	200,202	22,395	14,633
Female (%)	50.9	44.5	42
Age at the accident	8.2	7.2	6.9
Age at the 2nd-round examination	12.2	11.3	10.9
Percentage of Grade B (%)	0.84	0.80	0.89
Participation rate of confirmatory exam (%)	81	87	82
No. of cases diagnosed with M or SM	56	3	7
Multivariable-adjusted* RR	1	0.62 (0.20-2.01)	2.23 (1.01-4.90)

*: Adjusted for age, sex, and location group by external radiation doses.

Ohira T. et al. Epidemiology 30: 853-860, 2019.

Brief summary

- The detection rate of thyroid nodules and cancer increased with age.
- The detection rates of thyroid nodules and cancer were higher in female, but the percentage of female increased with age.
- Regional differences in the participation rate of confirmatory examination and examination intervals were observed among the examinees, which might affect the detection rate of thyroid cancer.
- Regional differences were observed in the implementation rate of FNAC in the confirmatory examination.
- Independent of sex, age, and external radiation dose, obesity was significantly associated with the detection rate of thyroid cancer.

Absorbed doses to the thyroids of 1-year-old infants estimated in the UNSCEAR 2020/2021 Report (excluding evacuated area)

UNSCEAR 2020/2021 Report, Volume II, Scientific Annex B Figure A-VII Relationship between absorbed doses to the thyroids estimated in the UNSCEAR 2020 Report and the detection rate of malignant nodules in Full-Scale Survey (longitudinal analysis)

	Q1	Q2	Q3	Q4
	0.5-2.6 mGy	2.7-4.3 mGy	4.5-7.0 mGy	7.0-15 mGy
Female (%)	50.3	50.0	49.1	49.6
Age at the earthquake (mean)	8.3	9.3	6.7	7.9
Examination Interval ((%)			
< 3 years	25.3	26.9	18.1	19.4
≥ 3 but < 3.5 years	12.5	4.2	3.7	2.1
≥ 3.5 but < 4 years	50.9	11.8	19.0	13.4
≥ 4 but < 4.5 years	8.3	38.4	42.1	52.7
≥ 4.5 years	3.0	18.6	17.0	12.4
M or SM (n)	16	28	28	27
Detection rate (per 100,000)	34.0	43.5	39.9	37.5

Absorbed dose

Document in the 18th meeting of Prefectural Subcommittee for the TUE program

Absorbed doses to the thyroids of 1-year-old infants estimated in UNSCEAR 2020 Report (evacuated area)

UNSCEAR 2020 Report, Scientific Annex B Figure A-IX

Estimation of personal internal exposure dose (thyroid equivalent dose)

- 1. As internal exposure doses, thyroid equivalent doses (mSv) exposed from tap water + inhalation for 14 days after the nuclear power plant accident was estimated based on the detailed version of behavior report in the Basic Survey form from March 12 to March 25, 2011.
- 2. External exposure doses were calculated by multiplying the doses assessed in the Basic Survey by the correction factor of 1.1.
- 3. Cases were those with nodules cytologically diagnosed as malignant or suspicious for malignancy in the first- to third-round surveys and the survey for 25 years (born in FY1992) who have behavior records of the Basic Survey.
- Controls were matched to cases by sex, age at the time of the earthquake, concurrent round of participation in last two visits with thyroid cancer detection in cases, and randomly selected at a ratio of 1:10 cases to controls.

Characteristics of cases and controls in the case-control study

(Cases were selected in the TUE only)

	Cases	Controls	Total
Cases (M or SM) (n)	108	0	108
Controls (n)	0	1080	1080
Age at the earthquake (mean)	13.7	13.7	13.7
Thyroid equivalent dose (mSv)			
Median	2.2	2.1	2.1
Min – Max	0.11–22.70	0.10 – 21.65	0.10 – 22.70
Grade B or C (%)	100	2.0	10.9

Document 3-2 in the 19th meeting of Prefectural Subcommittee for the TUE program

Characteristics of cases and controls in the case-control study

(Cases were selected in TUE and National Cancer Registry)

	Cases	Controls	Total
Cases (M or SM) (n)	131	0	131
Controls (n)	0	1310	1310
Age at the earthquake (mean)	13.5	13.5	13.5
Thyroid equivalent dose (mSv)			
Median	2.2	2.2	2.2
Min – Max	0.11–22.70	0.10 – 21.65	0.10 – 22.70
Grade B or C (%)	95.4	1.8	10.3

Document 3-7 in the 19th meeting of Prefectural Subcommittee for the TUE program

Distribution of thyroid equivalent doses in the control group

Document 3-2 in the 19th meeting of Prefectural Subcommittee for the TUE program

Odds ratio for detection of nodules diagnosed as malignant or suspicious for malignancy in each thyroid equivalent dose group

Document 3-2, 3-7 in the 19th meeting of Prefectural Subcommittee for the TUE program

Conclusions

- In addition to age and sex, regional differences in the participation rate of confirmatory examination, the implementation rate of FNAC, and examination intervals were confounding factors affecting to the detection rate of thyroid cancer.
- As in previous reports on thyroid cancer, an association between obesity and an increase in thyroid cancer has been observed.
- As for the association with radiation exposure, no statistically significant dose-response relationship between radiation dose and the detection rate of malignant nodules has been found at this time.

Acknowledgements

Fukushima Medical University

Radiation Medical Science Center

SUZUKI Satoru SUZUKI Satoshi FURUYA Fumihiko NAGAO Masanori HAYASHI Fumikazu OHIRA Tetsuya YASUMURA Seiji OHTO Hitoshi KAMIYA Kenji All Dept. of TUE staff

Department of Thyroid and Endocrinology

SUZUKI Shinichi IWADATE Manabu

Thyroid and Endocrine Center

YOKOYA Susumu

Doctors and medical technologists cooperating TUE program

● このスライドは、非営利かつ個人的な目的に限り閲覧することができます。

The following presentation slides are shared with symposium registrants exclusively for personal, non-commercial, educational purposes.

このスライドの著作権は、講演の発表者本人に帰属します(図表等の引用箇所は除く)。如何なる国・地域においても、また紙媒体やインターネット・電子データなど形態に関わらず、スライドの全部または一部を無断で複製、転載、配布、送信、放送、貸与、翻訳、販売、変造、二次的著作物を作成すること等は、固く禁止します。
Copyright of these slides belongs to the presenter and/or the Radiation Medical Science Center for the Fukushima Health Management Survey, Fukushima Medical University (except figures, tables, etc., cited from other sources). Authorized recipients should refrain from reproducing, reprinting, distributing, transmitting, broadcasting, loaning, translating, selling, modifying, or creating derivatives of any slides, in any physical or electronic medium anywhere in the world.

2023年 福島県立医科大学『県民健康調査』国際シンポジウム 公立大学法人福島県立医科大学放射線医学県民健康管理センター 国際シンポジウム事務局(広報・国際連携室) 図 kenkani@fmu.ac.jp Tel: 024-581-5454(平日9~17時) 2023 Fukushima Medical University International Symposium on the Fukushima Health Management Survey Secretariat of International Symposium Office of Public Communications and International Cooperation, Radiation Medical Science Center for the Fukushima Health Management Survey, Fukushima Medical University Secretariat of International Symposium